A truncated aminoacyl-tRNA synthetase modifies RNA.

نویسندگان

  • Juan C Salazar
  • Alexandre Ambrogelly
  • Pamela F Crain
  • James A McCloskey
  • Dieter Söll
چکیده

Aminoacyl-tRNA synthetases are modular enzymes composed of a central active site domain to which additional functional domains were appended in the course of evolution. Analysis of bacterial genome sequences revealed the presence of many shorter aminoacyl-tRNA synthetase paralogs. Here we report the characterization of a well conserved glutamyl-tRNA synthetase (GluRS) paralog (YadB in Escherichia coli) that is present in the genomes of >40 species of proteobacteria, cyanobacteria, and actinobacteria. The E. coli yadB gene encodes a truncated GluRS that lacks the C-terminal third of the protein and, consequently, the anticodon binding domain. Generation of a yadB disruption showed the gene to be dispensable for E. coli growth in rich and minimal media. Unlike GluRS, the YadB protein was able to activate glutamate in presence of ATP in a tRNA-independent fashion and to transfer glutamate onto tRNA(Asp). Neither tRNA(Glu) nor tRNA(Gln) were substrates. In contrast to canonical aminoacyl-tRNA, glutamate was not esterified to the 3'-terminal adenosine of tRNA(Asp). Instead, it was attached to the 2-amino-5-(4,5-dihydroxy-2-cyclopenten-1-yl) moiety of queuosine, the modified nucleoside occupying the first anticodon position of tRNA(Asp). Glutamyl-queuosine, like canonical Glu-tRNA, was hydrolyzed by mild alkaline treatment. Analysis of tRNA isolated under acidic conditions showed that this novel modification is present in normal E. coli tRNA; presumably it previously escaped detection as the standard conditions of tRNA isolation include an alkaline deacylation step that also causes hydrolysis of glutamyl-queuosine. Thus, this aminoacyl-tRNA synthetase fragment contributes to standard nucleotide modification of tRNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutation in Aminoacyl Trna Synthetase 1 In Autosomal Recessive ‎Intellectual Disability ‎

Background: Intellectual disability (ID) is one of the most common neurodevelopment disorders that caused by both environment and genetic factors. Also genetic defects have involving for approximately 50% of ID etiology, it is demonstrated that genetics play significant role in ID development. The important risk factor in most country in ID is consanguinity marriage. Iran has high frequency of ...

متن کامل

Mechanism and evolution of multidomain aminoacyl-tRNA synthetases revealed by their inhibition by analogues of a reaction intermediate, and by properties of truncated forms

Many enzymes which catalyze the conversion of large substrates are made of several structural domains belonging to the same polypeptide chain. Transfer RNA (tRNA), one of the substrates of the multidomain aminoacyl-tRNA synthetases (aaRS), is an Lshaped molecule whose size in one dimension is similar to that of its cognate aaRS. Crystallographic structures of aaRS/tRNA complexes show that these...

متن کامل

The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-β-lysine

The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with α-lysine at low efficiency. Cell-free extracts containing non-α-lysine substrates of PoxA modified EF-P with a change in mass consistent with addition of β-lysine, a substrate also predicted by genomic analyses. EF-P was efficiently functionally modified with (R)-β-lysine but not (S)-β-lysine or genetically encoded ...

متن کامل

Expanding a tyrosyl-tRNA synthetase assay to other aminoacyl-tRNA synthetases

Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs. In general, aminoacyl-tRNA synthetase assays require stoichiometric amounts of tRNA, which limits their sensitivity while increasing their cost. This requirement for stoichiometric amounts of tRNA can be alleviated if the aminoacyl-tRNA product is cleaved following the tRNA aminoacylation reaction, regener...

متن کامل

Myocardial aminoacyl-transfer-ribonucleic acid synthetase and aminoacyl-transferring enzyme activity.

The properties of cytoplasmic aminoacyl-tRNA synthetase and aminoacyl-transferring enzymes in the myocardium were examined and methods for the assay of the activity of these enzyme systems were developed. Aminoacyl-tRNA synthetase activity was measured from the rate of incorporation of (14)C-labelled amino acid into aminoacyl-tRNA. Transferase activity was measured from the rate of incorporatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 20  شماره 

صفحات  -

تاریخ انتشار 2004